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A numerical method is proposed for the calculation of  concentration, potential, and current distri- 
butions in electrochemical cells controlled by diffusion and migration of  ions. Thus a hypothetical 
variable v(x, y, t) is assumed to satisfy a differential equation which is similar to that of  non-steady- 
state heat conduct ion and corresponds, at steady state, to Poisson's equation for the potential. The 
differential equation for v(x, y, t) and the diffusion-migration equations of  ions are simultaneously 
solved by a finite difference method. Examples of  calculation are given for single and mixed electrolyte 
solutions in one- and two-dimensional cells. The proposed method is applicable to systems in which 
bipolarity occurs. 
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interelectrode distance 
concentration of species i 
dimensionless concentration of species i 
(CdCMo) 
diffusion coefficient of species i 
Faraday constant 
current density 
dimensionless current density 
(ia/FDMCMo) 
flux of species i 
dimensionless flux of species i 
(Jia/OMCMo) 
hypothetical constant of bipolar metal 
(compared to heat capacity) 
distance from surface 
dimensionless distance from surface 
gas constant 
surface area 
time 
absolute temperature 
hypothetical variable which, for 
t = 0% corresponds to ~b(x, y) 
dimensionless variable (Fv(x, y, t)/RT) 
which, for 19 = Go, corresponds to 
+(X, Y) 
Cartesian coordinates 
dimensionless Cartesian coordinates 
(x/a, y/a) 

1. Introduction 

Calculation of potential and current distributions in 
electrochemical cells has been an important subject 
in electrochemical engineering [1-4]. Much work has 

z i charge number of species i 
hypothetical constant (compared to 
thermal diffusivity) 

~c transfer coefficient 
fl dimensionless parameter 

(F2a2CMo/eRT) 
7 dimensionless parameter 

(F2 CMoa3 / KB RT) 
dielectric constant 

19 dimensionless time (DM t/a 2) 
a dimensionless area (S/a 2) 
~b(x, y) potential of solution 
qSM potential of metal 
�9 (X, Y) dimensionless potential of solution 

(FO(x, y)/RT) 
q)M dimensionless potential of metal 

(FOM/RT) 
�9 (X, Y) stream function defined by Equation 

28 

V vector operator ( O ,  ~y)  

�9 Boldface letters indicate vector quantities. 

Subscripts 
A anion A 
B bipolar metal 
i species i 
M metal M or cation M + 
S cation S + 
0 initial or standard state 

been reported for the case in which the concentration 
gradients of ions in the solution can be neglected, 
where Laplace's equation for the potential holds 
[5-13]. Even when mass transport affects the current 
distribution, Laplace's equation is often satisfied in 
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the bulk solution since the concentration variation is 
restricted to a thin diffusion layer at the electrode 
[14, 15]. However, when a large current flows in an 
electrolytic cell or a battery, nonuniform distributions 
of concentrations may developed throughout the cell. 
Nonuniforrnity of ionic concentrations may also 
become significant in a galvanic cell associated with 
local corrosion of metal such as pitting and crevice 
corrosion. In such cases Laplace's equation for the 
potential is no longer valid. If  we consider cases 
in which mass transfer occurs only by diffusion and 
migration, concentration and potential distributions 
are governed by relevant diffusion-migration equa- 
tions for ions and Poisson's equation for the potential 
(or the electroneutrality condition as an approxi- 
mation of Poisson's equation). In the one-dimensional 
case, such problems have been solved using the total 
current as an independent variable. Thus, analytical 

solutions have been obtained using the electroneutral- 
ity condition [16, 17], and numerical calculation has 
been reported using Poisson's equation [18]. In two- 
and three-dimensional cases, the problem is far more 
difficult to solve since the current density is a vector 
variable. A two-dimensional model has been proposed 
which takes into account the diffusion, migration, and 
unsteady-state effects in a solution of single electrolyte 
[19]. However, the situation is complicated if the 
solution contains multiple electrolytes of comparable 
concentrations, and if boundary conditions are not 
simple as in the case of a bipolar electrode. 

In previous papers the potential and current distri- 
butions at a bipolar electrode have been considered 
[20, 21], and a numerical method has been proposed 
for the calculation of potential distribution using an 
analogy with heat conduction [22, 23]. The present 
paper shows that a similar method is applicable to the 
calculation of concentration and potential distri- 
butions controlled by diffusion and migration of ions. 
Such a situation may be encountered in a cell in which 
the solution is stagnant or held in a matrix. The pro- 
posed method is particularly useful when bipolarity 
occurs in the cell. Only one- and two-dimensional 
distributions are considered here, although there is 
no substantial limitation to the three-dimensional 
calculation. 

2. Principle 

The assumptions employed are: (a) that the electrolyte 
solution is dilute and ideal; (b) that convection and 
homogeneous chemical reactions do not occur; and 
(c) that electroneutrality is valid in the solution except 
for the double layer region. Then the flux of species i 
in the bulk of the solution is expressed as 

Z i FDi ci 
Ji -- R ~  Vr -- DiVc i (1) 

where c i is the concentration of species i, zi is the 
charge number, D~ is the diffusion coefficient, F is 
Faraday's constant, R is the gas constant, T is the 
absolute temperature, and r is the electric potential in 

the solution. The rate of change of concentration c~ is 
obtained from mass balance of species i: 

Oci - V ' j i  = ziF 
63--- ~ = R T  V(DiciVcfl) + V(DiVc i )  (2) 

At steady state, 

Zi-'---F V(DiciV~b) + V(D~Vc 0 = 0 (3) 
R T  

The electroneutrality condition is 

~z~c~ = 0 (4) 

In principle, Equations 3 and 4 govern the steady-state 
distributions of ci and r However, it is not easy to 
solve these equations except for the one-dimensional 
case (see Appendix). If, in particular, a bipolar elec- 
trode is involved, even numerical calculation will be 
difficult since boundary values of concentrations and 
potential at the bipolar electrode cannot be specified 
in advance. 

Now, let us consider Poisson's equation for q5 
instead of the electroneutrality condition (Equation 4). 

v2r F Z -~- ZiC i (5) 
g i 

Here g is the dielectric constant of the solution. 
For pure water at 25 ~ e = 78 .3 •215  
10-12 C 2 j -2m-1 = 6.93 • 10 12 CV-1 cm-l .  The 
numerical value of Fie is so large (1.392 • 1016 Vcm 
equiv -1 for pure water) that Equation 5 does not 
necessarily reduce to Laplace's equation although 
electroneutrality is a very good approximation. In 
principle Equation 2 (or Equation 3 at steady state) 
and Equation 5 determine the distributions of c1 and 
r but solving these equations is difficult except for 
some simple cases. 

There is a similarity between the potential distri- 
bution in a solution and the temperature distribution 
in a heat-conducting medium [24]. Thus the potential 
distribution which obeys Poisson's equation can be 
compared to the steady-state distribution of tempera- 
ture with heat generation. Now, let us assume a hypo- 
thetical variable v(x,  y, t) and a differential equation 

~t - c~ V2v +-e  �9 zici (6) 

which is similar to the equation of non-steady-state 
heat conduction. Here, e is a hypothetical constant 
(compared to the thermal diffusivity in heat conduc- 
tion problems). When c~v/& = 0 for t = ~ ,  Equa- 
tion 6 has a form identical to Equation 5, and the 
value of v(x,  y, ~ )  corresponds to the potential 
r y). Therefore, if we solve Equation 6 simul- 
taneously with Equation 2, in which r y) is 
replaced by v(x,  y, t), and obtain a steady-state 
(Ov/& = Oci/Ot = 0 for t = ~ ) ,  the values of 
v ( x , y ,  ~ )  and ci (x ,y ,  ~ )  are regarded as the 
solutions of Equations 3 and 5. It should be men- 
tioned, however, that the variable v(x,  y, t) has the 
meaning of potential only when Or~& converges to 
zero. 
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The current density is then given by 

i =  F E  ~,)~ - ~ z~Di~, Vr  
i 

-- F ~ (zi Di Vci) 
i 

(7) 

3. Numerical calculation procedure 

Let us consider a cell containing a mixed solution of 
two 1:1 electrolytes, M+A - and S+A - ,  where the 
anodic and cathodic reactions are the dissolution and 
deposition of metal M: 

M ,M + + e- (anode) 

M + + e- , M (cathode) 

Thus S+A - represents a supporting electrolyte. As is 
usually the case, the thickness of the double layer at 
the electrodes and at the insulating walls is assumed to 
be negligibly small compared to the interelectrode 
distance and the electrode width. Then the boundary  
of the bulk solution, which is the solution side limit of 
the electric double layer, can be approximately taken 
at the surfaces of electrodes and insulating walls [25]. 
Therefore, boundary conditions at the anode and 
cathode and at insulating walls are formulated as 
follows. Since the fluxes of non-electroactive species 
S + and A- in the normal direction to the surface are 
zero, 

FD s c~r OCs 
R T  CS ~ + Ds On - 0 (8) 

FDA ~ )  gCA 
- R T cA -~n Dr_ DA an - 0 (9) 

where n is the distance from the surface. Using Equa- 
tions 7, 8, and 9, the current density in the normal 
direction at the electrode surface is expressed as 

i -- F2DM gO gem (10) 
R T  cM ~ -- FDM ~n 

The current density is a function of the potential 
difference between the electrode and the nearby 
solution and of the concentration CM: 

i = f{(r -- q~), CM} (11) 

Therefore, the third boundary condition is given as 

F2 DM gq~ gC M 
R T  ~ N + F D .  a~ - f{(r - ~), c~}  

(12) 

In the one-dimensional case, the condition of constant 
flux of M + may be used instead of Equation 12. Since 
electroneutrality is assumed in the bulk solution, the 
fourth boundary condition is 

C M "~ C S - -  C A = 0 (13) 

Boundary conditions at insulating walls are given 
from zero fluxes of all species (M +, S +, and A ) and 
from the electroneutrality condition. 

Assuming that the anode and the cathode are paral- 

lel plates positioned at the distance a, it is convenient 
to use the following dimensionless quantities: X = x/a, 
Y = y/a, N = n/a, | = DMt/a 2, Ci = Ci/CMo, ~ = 
FO/RT, V(X, Y, O) = Fv(x, y, t)/RT, I = ia/FDMcMo, 
where CM0 is the initial concentration of M + as the 
reference species. Then Equation 2 (for M +, S +, and 
A- )  and Equation 6 are rewritten in the following 

02CM ~2CM (14) 
+ - ~ - T +  ay2 

a| - DM ?-2 Cs g2 + Cs ?-y 

g2 Cs 0 2 Cs ] 
+ - ~ -  + ~-y~-j (15) 

aCA _ g o  DMDA ~'(_ ~-X0 ( C A ~ ) _ ~ ( C A ~ _ _ _ ~ )  

~ CA ~2 CA "( 
+ ~ + c~y2 j (16) 

gv g2v  
gO -- D M k 0X2 -t- g y 2 ]  

-~- ~MM (CM + Cs - -  CA)  (17)  

where fl is a dimensionless parameter F2a2cMo/aRT 
and has a typical value of 5.42 x 10 ~4 for a = 1 cm, 
CM0 = l0 -3molcm -3, e = 6.93 X l0 -12CV - l c m  -l, 
and T = 298 K. Boundary conditions corresponding 
to Equations 8, 9, 12 and 13 are as follows. 

g V OCs 
C s ~ - ~ +  aN - 0 (18) 

gv gcA 
- - C  A ~ -~  + g---~-- = 0 (19) 

cM~+av aCMgN - -f{(VM - V),CM} (20) 

CM + Cs - CA = 0 (21) 

Boundary conditions at the insulating walls are 
similarly written in dimensionless forms. 

For finite difference calculations we can use forward 
difference approximations for derivatives with respect 
to | and central difference approximations for deriva- 
tives with respect to X and Y as exemplified by 

g e M  --  (CM)i,j ,k+l - -  (CM)i,j, k 

gO AO 

gc~  _ (CM)i+L,j,k -- (CM)~-,,j,k 
OX 2AX 

g2CM __ (CM)i+l , j ,k  - -  2(CM)i,j,  k -~- (CM)i_ l . j ,  k 

g x  2 (A Jr) 2 

where AX, A Y, and AO are finite differences of X, Y, 
and | and i, j, and k are the ordinal numbers corre- 

dimensionless forms. 
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sponding to X, Y, and | respectively: 

X =  iAX,  Y =  j A Y ,  O = k A O  

Then we obtain a set of  difference equations which 
allow calculation of  explicit values of  the CM, Cs, CA, 
and V at the time step k + 1 from the CM, Cs, CA, 
and V values at the time step k. Starting from appro- 
priate initial conditions we can continue such calcu- 
lations until a steady state is reached. 

Convergence to a steady state was attained by using 
appropriate values of  AX, A Y, A| and ~fl/DM. Typi- 
cal values used were A| = 0.001, AX = AY = 0.05, 
and ~fi/DM = 100. The time required for convergence 
on a personal computer was several tens of  minutes to 
several hours. The terms (e/DM) (t? 2 V/QX 2 + t? 2 V/O y2) 
in Equation 17 was insignificant since a/DM was very 
small: ct/DM = 1 .85x 10 -j3 for fi = 5 .42x  10 j4. 
Therefore, O V/~| = 0 in Equation 17 implies the 
electroneutrality condition. 

4. Results o f  calculation 

The proposed method was tested in the simple one- 
dimensional case in which an analytical method was 
applicable. Thus it was assumed that a solution of  
single l : l  electrolyte M + A  - was electrolyzed with 
parallel plate electrodes of  infinite size. The diffusion 
coefficients D M and DA were taken to be equal. 
Figure 1 shows the potential distribution and con- 
centration distributions of  M + and A-  calculated 
for I = - 2  (half the limiting current density; see 
Appendix). Concentrations of  M + and A -  are almost 
equal at every point in accordance with the electro- 
neutrality condition. However, Laplace's equation for 
the potential is not satisfied as apparent  from non- 
linearity of  the potential gradient. The solid lines in 

1.5 

1 . 0 -  

let 

t j  

0.5( 

0 I 
0 0.5 1.0 

Ca t  h o d e  X = x / a  A n o d e  

Fig. 1. One-dimensional distributions of  concentrations and poten- 
tial in a solution of  single electrolyte (M+A -) .  Current density, 
i = -2FDMco/a (I = - 2 ) ;  (o)  C u (=CM/Co); (+)  C a (=CA/CO); 
(A) �9 (=  F~/RT) .  

3 t 1.5 

1 - 0 . 5  

0 I 0 
0 0.5 1.0 

Cathode X = x /a Anode 

Fig. 2. One-dimensional distributions of concentrations and poten- 
tial in a solution of mixed electrolytes (M+A - + S+A -). Current 
density, i = --2FDMCMo/a (I = --2); (O) C M (= CM/CMo); ([3) C s 
(= Cs/CMo); (+) C A (= CA/CMo); (ZX) �9 (=F~b/RT). 

Fig. 1 represent the following equations obtained by 
analytical calculation (see Appendix): 

CM = CA = X +  �89 (22) 

q5 = in (1 + 2X) (23) 

Good  agreement is seen between numerical and 
analytical calculations. 

One-dimensional distributions of  concentrations 
and potential were also calculated for a solution con- 
taining two electrolytes M+A - and S+A - .  Calcu- 
lation was performed in the case where concentrations 
o f M + A  - and S+A - were equal (Cs0 = 1, Ca0 = 2), 
and the current density was I = - 2 .  The diffusion 
coefficients DM, Ds, and D~, were taken to be equal. 
Figure 2 shows the calculated distributions of  CM, Cs, 
CA, and O. The solid lines represent the following 
equations obtained by the analytical calculation (see 
Appendix): 

CA = X + 3 (24) 

1 
Cs = (X + 3/2) In (5/3) (25) 

1 
CM = X + ~ -- (X + 3/2) In (5/3) (26) 

�9 = I n ( 1  + 2 X )  (27) 

Again, good agreement is seen between the numerical 
and analytical calculations. 

Next, two-dimensional distributions were con- 
sidered in a solution of single electrolyte M + A -  in the 
rectangular cell, shown in Fig. 3, with the geometry of 
a : c = 1 : 1 and b : c = 1 : 2. It was assumed that there 
was no overpotential at both electrodes: constant 
potentials were assigned to the electrolyte at the elec- 
trode surface. Only a half of  the cell was considered. 
Figure 4 shows contours of the M + concentration 
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Fig. 3. Two-dimensional  model of  a rectangular cell. a/c = 1; 
b/c = 1/Z 

which was almost exactly equal to the A- concen- 
tration at any point. This is the electroneutrality 
condition which is anticipated in the bulk solution. 
Figure 4b shows the potential and current distri- 
butions (equipotential lines and current lines). The 
current lines were drawn as contours of the stream 
function which was calculated by 

�9 (X, Y)  = ud(Xo, Iio) - Iy(X, Y o ) d X  

+ ~o[yr/x(X, Y ) d Y  (28) 
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0.8 ~-~'--.., "---..~. 
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/ / / / / / / / / / / A  

Cathode  

(b) 

A n o d e  
////////, "////////////// 

I I 

I I o.9 j ~  

\ - !  

I f--Vq~;~,'v-r-- I, 

C a t h o d e  

Fig. 4. (a) Concentrat ion distribution of  M § ( A - )  and (b) potential 
and current distributions in a solution of  single electrolyte (M +A ). 
q)(Y = 0) = 0; q,(Y = 1) = 1. In (a) the numbers  indicate the 
value of  C M ( ~  CA); in (b) the lines with numbers  are equi-potential 
lines, each number  indicating the value of  q~. The separat ion 
between adjacent current  lines corresponds  to Art ' = 0.2. 

where/~(X, Y) and Iy(X, Y)  are dimensionless forms 
of the x- and y-component of the current density. In 
the present case Ix(X, Y)  and Iy(X, Y)  are expressed 

0(I) OCM "~ (29) 
L ( x , Y )  = - c ~ $ 2  + 0 x j  

Iy(X, Y) = - C M ~ +  (30) 

a s  

It is noted in Fig. 4b that the ratio of the separation 
between adjacent potential lines to the separation 
between adjacent current lines varies from place to 
place. This is an indication that the local potential 
gradient is not proportional to the local current 
density, that is, Ohm's law does not hold. 

Two-dimensional distributions of concentrations, 
potential, and current were also calculated for a mixed 
solution of two electrolytes M+A - + S+A - under 
similar conditions as in the case of one-dimensional 
calculation. Figure 5a, b, and c shows the obtained 
distributions of the M § S § and A concentrations, 
respectively. The sum of CM and Cs coincides with C A 

at every point. It is noted that the supporting elec- 
trolyte S+A is enriched near the cathode. Figure 5d 
shows the corresponding potential and current distri- 
butions. The present method is applicable to elec- 
trolyte systems with any number of ionic species. 

We can take into acccount electrode kinetics, for 
example, of the Butler-Volmer type: 

i = i0 exp R T  

-cM0C~M exp ( -- ecF(q~M -- q ) ) ) ] R T  (31) 

Boundary conditions at the electrode surface are rather 
complicated. Assuming a simple M+A solutions 
(Cs = 0 and CM = CA), dimensionless forms of boun- 
dary conditions (Equations 19, 20, and 21) are now 
written: 

0v  0 c ,  
- - C A ~ +  0N - 0 (32) 

CM ~--~ + 0 V  0CMoN - I0[exp {(1 - ec)(VM -- V)} 

- CM exp {-- ec(VM -- V)}] 

(33) 

CM -- CA = 0 (34) 

where VM = FvM/RT and I0 = ioa/FDMCMo . Equa- 
tions 32 to 34 determine the C and V values at the 
electrode surface. For the cathode, for example (see 
Fig. 3), the corresponding difference expressions are 

(..>,l,; (.> 
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A n o d e  
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' / / / / / / / / / 2 f  " " 

Cathode  
(c 

A n o d e  
/ , 1 " / / / / / / / / / / / / / / / / / /  
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Fig. 5. Concentration distributions of  (a) M +, (b) S +, and 
(c) A - ,  and (d) potential and current distributions in a mixed 
solution of two electrolytes (M+A - + S+A-) .  
q~(Y = 0) = 0; ~ (Y  = 1) = 0.5; initial concentrations, 
cM0 = Cso = CA0/2. The numbers in figures (a), (b), and (c) 
indicate the values of  C M, C s, and C A, respectively, The 
numbers on potential lines in figure (d) indicate the values of  
q~. The separation between adjacent current lines corresponds 
to A~  = 0.2. 

= - I0 (exp  [(1 - ~c) {(VM)k -- (V)i,0,~}] 

-- (C)i,0,k exp [--ac{(VM)k -- (V)i,O,k)]) (36) 

where (C)i,0,k = (CM)i,0,k = (CA)i,0,k. Two unknowns 
(C)~,0,k and (V)~,0,~ can be calculated from these equa- 
tions using the Newton-Raphson method. Figure 6 is 
an example of calculation with I0 = 1 and ac = 0.5. It 
is noted that equipotential lines cross the electrode 
surfaces and that current lines do not make right 
angles to the electrode surfaces. 

Bipolarity is sometimes encountered in electrolytic 
systems and in corrosion cells. Both anodic and 
cathodic reactions can occur on the bipolar electrode 
(corroding metal) placed in the potential field in the 
solution. Conventional methods would require lengthy 
iterations for the calculation of concentration and 
potential distributions since boundary conditions at 
the bipolar metal do not specify either potential or 
current density. The present method is applicable to 
such systems. As an example, let us consider a metal 
plate placed between the anode and the cathode in a 
simple M + A- solution, where dissolution and deposi- 
tion of  metal M take place with Butler-Volmer type 
kinetics (Equation 31). The geometry of  the cell con- 
sidered is shown in Fig. 7. Boundary conditions at the 
anode and cathode and at the insulating wall are the 

same as described before. Two of the boundary con- 
ditions at the bipolar metal are zero flux of  A and 
electroneutrality. The other restriction at the bipolar 
metal is that the total current should be zero: 

f ib dS = 0 (37) 

where i B is the current density in the normal direction 
at the surface, S is the surface area, and integration 
should be made over the whole surface. The current 
density is is expressed as 

iB _ F~ DM O~b ~CM (38) 
R T  cM -~n -- FDM ~n 

_ C.M_M exp (39) 
CMO R T  

where q~B is the potential of  the bipolar metal, which 
must be treated as an additional variable. Now, let us 
recall the analogy between potential and temperature, 
and between current density and heat flux. Then we 
can assume the equation 

dvB 
KB dt - f i R d S  (40) 

where K B is a hypothetical constant (compared to the 
heat capacity in heat conduction problems). Equation 
40 can be compared to the relation between the total 
heat flux and the rate of change of  temperature. If  we 
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Fig. 6. (a) Concentration distribution of M + ( A - )  and  (b) potential 
and current distributions in a solution of single electrolyte (M + A - )  
with Butler-Volmer kinetics, qbM(cathode ) = 0; q)M(anode) = 1; 
I0 = 1; % = 0.5; Aq~ = 0.05 (see the caption of  Fig. 4). 

combine Equation 40 with Equations 38 and 39, in 
which q5 B is replaced by vB (t), and obtain the condition 
dvB(t)/dt = 0 at t = 0% the value of vB(oo) can be 
regarded as q~B. Equation 40, combined with Equation 
38, can be converted to the dimensionless form 

dVBdo ( ~OV OCM~aN ) = Y f CM + da (41) 

where a = S/a 2 and 7 = F2cMoa3/KB RT. Using forward 
difference approximation for the derivative d VB/d| 
the difference expression for Equation 41 is 

+((CM)i'LkA/CM)"~ (42) 

The summation should be made over the whole 
surface of the bipolar metal. Assuming an appropriate 
value for 7, we can explicitly calculate the VB value at 
the time step k + 1 from the C, V, and VB values at 
the time step k. The calculation procedure for C and 

(a) 
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"'~,.~ B l 
/ / / / / / / J  

Bipolar metal 

N -,1' CD ~ O 
r 04 04 ,,4 

Anode 

/ 

Cat hode Anode 
Bipolar metat 

Fig. 7. (a) Concentration distribution of M + ( A - )  and (b) potential 
and current distributions involving a bipolar metal placed between 
the anode and cathode. Electrolyte, M+A-;  ~M(cathode) = 0; 
qbM(anode) = 5, The Butler-Volmer kinetics with I 0 = 10 and 
e~ = 0.5 is assumed at the anode, cathode, and bipolar metal. 
AW = 0.2 (see the caption of  Fig. 4). Dimensionless potential of the 
bipolar metal, ~B, is found to be 3.60. 

V is the same as described earlier. Figure 7 shows 
the calculated results of concentration, potential, and 
current distributions. Unlike systems with uniform 
concentrations in the bulk, the low concentration of 
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Fig. 8. Current density at the bipolar metal. (See the caption of 
Fig. 7). 
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Fig. 9. (a) Concentration distribution of M+(A ) and (b) potential and current distributions involving a bipolar metal placed in a 
concentration gradient of M+A - . Electrolyte, M+A - ; C(left) = 0.5; C(right) = 1.5; �9 B = 0. The Butler-Volmer kinetics with I0 = 10 
and ec = 0.5 is assumed at the bipolar metal. A~ = 0.04 (see the caption of Fig. 4). 

ionic species near the cathode results in a lower con- 
ductivity in the electrolyte, requiring a larger electric 
field to drive the current, as shown in Fig. 7b. It 
is apparent that the right-hand part of  the bipolar 
metal becomes cathodic and the left-hand part 
becomes anodic. Figure 8 shows the current density 
(dimensionless) on the bipolar electrode as a function 
of X. It is interesting that the current distribution on 
the bipolar metal is very symmetric although the 
potential distribution is asymmetric. 

The other example of bipolarity is a kind of  local 
corrosion in which metal M is placed in an M+A - 
solution with a concentration gradient, but without 
any applied voltage. The geometry of  the system 
considered is shown in Fig. 9. The assumed situation 
is that the right and left ends are permeable walls 
and that the M+A - concentrations at the two ends 
are different and kept constant. Dissolution and 
deposition of metal M take place with Butler-Volmer 
kinetics (Equation 39). Figure 9 shows an example of 
calculated distributions of  concentration, potential 
and current. The values of potential, ~, are expressed 
with reference to the potential of  the bipolar metal, 
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Fig. 10. Current density at the bipolar metal. (See the caption of 
Fig. 9). 

(I) B.  It is apparent that a local current flows between 
the anodic and cathodic regions on the metal plate. 
This is a typical example of  metal corrosion due to 
a concentration cell. Figure 10 shows the current 
density on the bipolar metal surface. Again, the 
current distribution is very symmetric. The symmetric 
behaviour of current distributions observed in Figs 8 
and 10 is qualitatively explained by a cancellation 
of  the asymmetric distribution of  potential and the 
asymmetric effect of the M + concentration in the 
kinetics of dissolution and deposition of metal M 
(Equation 39). 

5. Conclusion 

A numerical method has been proposed for the cal- 
culation of  concentration, potential, and current 
distributions controlled by diffusion and migration of 
ions. The present method is simple and flexible and 
has many applications. It is particularly useful for 
treating bipolar electrodes such as are encountered in 
local corrosion cells. Its extension to three-dimensional 
problems will be straightforward; only terms with 
respect to z need to be added to the relevant equations. 

Appendix 

One-dimensional distributions of concentrations and 
potential at steady state can be calculated analytically 
in an electrolytic solution containing two 1:1 elec- 
trolytes (M+A - and S+A - ). The anodic and cathodic 
reactions are the dissolution and deposition of metal 
M. 

Using dimensionless forms of  fluxes, the flux equa- 
tions for M +, S +, and A -  are expressed as 

d@ dCM (A1) 
J M  - -  C M  dX dX 

Ds ( d *  dCs'~ (A2) 
�9 Is = ~ - C s  dX d X J  

D A (  dO d C a )  (A3) 
JA = ~ CA dX dX 
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Dimensionless current density is 

I = JM + J s - -  JA (A4) 

Assuming the electroneutrality condition, 

CM = C A -  Cs (A5) 

Since the fluxes of non-electroactive species, S + and 
A- ,  are zero everwhere, 

dqb dCs 
Cs dX - dX (A6) 

d@ dCA 
CA dX - dX (A7) 

Substituting Equation A5 in Equation A1, and using 
the relations A6 and A7, we obtain 

JM = -- 2 d c A  (A8) 
dX 

Current density is 

I = arm = - 2 d C A  
dX (A9) 

At a constant current, integration of Equation A9 
yields 

CA = CA0 -- (I/2)(X- 1/2) (A10) 

where CA0 is the dimensionless concentration CAo/CMo. 
If we define the quantity k = - I/2CAo, then 

CA = CA0{1 + k ( X -  1/2)} (All )  

Equation A7 can be integrated to give 

ap = In CA + const 

= In [CA0{1 + k ( X -  1/2)}] + const (A12) 

Integration of A6 yields 

r = - l n  C s + const (A13) 

From A12 and A13, Cs is expressed as 

Cs = Cso ln{(2 + k ) / ( 2 -  k)} 

( 1 ) (114) 
x 1 + k ( X -  1/2) 

where Cs0 is the dimensionless concentration Cso/CMo. 
Finally the concentration of M + is given by 

CM = C A - C s  

= CA0{1 + k ( X -  1)} 

- Cso ln{(2 + k ) / ( 2 -  k)} 

( 1 ) (A15) 
x l + k ( X -  1/2) 

For a solution containing single electrolyte M + A- ,  

Cu = CA = 1 -- ( / /2)(X--  1/2) (A16) 

The limiting current density I l i m  is then calculated from 
Equation A16 by putting CM = 0 at X = 0: 

Ilim = - -  4 (A17) 

The solid lines in Fig. 1 were calculated from Equa- 
tions A16 and A12 with I = - 2  (half the limiting 
current density). The solid lines in Fig. 2 were cal- 
culated from Equations A11, A12, A14, and A15 with 
CA0 = 2, Cs0 = l, a n d I =  - 2 .  
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